Preview: Developing a Migration Module for the Demetra CGE

Notes prepared for the PANAP General Annual Meeting

Damiaan Persyn (damiaan.persyn@thuenen.de)

Thünen Institute and University of Göttingen, Germany

15 September 2022

Preview: Developing a Migration Module for the Demetra CGE

This is an upcoming collaboration with

- Dorothee Flaig, University of Hohenheim
- Scott McDonald, CGEMOD
- Emanuele Ferrari, JRC

• . . .

Inspired by

- Report: Flaig and Persyn, 2021
- Econometric paper: Colen and Persyn, 2021/2022, MPRA 113385

In CGE models, migration is often modelled in an ad-hoc fashion.

- A function describes in-migration depending on local factors.
 - But what functional form? How to estimate parameters?
 - Keep track of population in origin
 - Flows need to be bounded

In CGE models, migration is often modelled in an ad-hoc fashion.

- A function describes in-migration depending on local factors.
 - But what functional form? How to estimate parameters?
 - Keep track of population in origin
 - Flows need to be bounded
- Possible solution: set up a transition matrix

	A	В		
Α	0.96	0.04		
В	0.04	0.96		

In CGE models, migration is often modelled in an ad-hoc fashion.

- A function describes in-migration depending on local factors.
 - But what functional form? How to estimate parameters?
 - Keep track of population in origin
 - Flows need to be bounded
- Possible solution: set up a transition matrix

- separate per sex,...
- what with several continuous explanatory variables?

• Our suggestion: use multinomial logit, statistical model for transition matrix

	A	В			А	В
A	0.96	0.04	\rightarrow	Α	$P(X_{od})$	$P(X_{od})$
В	0.04	0.96		В	$P(X_{od})$	$P(X_{od})$

$$P(X_{od}) = \frac{m_{od}}{pop_o} = \frac{exp(X_{od}\beta)}{\sum_d exp(X_{od}\beta)}$$

Our suggestion: use multinomial logit, statistical model for transition matrix

	A	В			А	В
A	0.96	0.04	\rightarrow	Α	$P(X_{od})$	$P(X_{od})$
В	0.04	0.96		В	$P(X_{od})$	$P(X_{od})$

$$P(X_{od}) = \frac{m_{od}}{pop_o} = \frac{exp(X_{od}\beta)}{\sum_d exp(X_{od}\beta)}$$

• Using nested logit for additional insight

1 Existing models often omit size of destination cause: entire country/region treated as units of choice

- 1 Existing models often omit size of destination cause: entire country/region treated as units of choice
- 2 Proposed solution: consider locations as aggregates of many underlying fundamental units of choice (e.g. opportunities, jobs) in a nested discrete choice model

- 1 Existing models often omit size of destination cause: entire country/region treated as units of choice
- 2 <u>Proposed solution</u>: consider locations as aggregates of many underlying fundamental units of choice (e.g. opportunities, jobs) in a nested discrete choice model
- 3 Additional insights:
 - how to interpret coefficient on size in gravity equation (thanks to discrete-choice micro-foundation)
 - how to combine multiple size variables
 - attractive effect of dispersion/variation

If you migrate to d, on arrival, with probability $urate_d$ you are unemployed and receive *benefits_d*. With probability $(1 - urate_d)$ you earn wage *wage_d*.

If you migrate to d, on arrival, with probability $urate_d$ you are unemployed and receive *benefits_d*. With probability $(1 - urate_d)$ you earn wage *wage_d*.

Migrants choose destination d with highest ex-ante expected utility

 $E[U_d] = urate_d * U(benefits_d) + (1 - urate_d) * U(wage_d)$

If you migrate to d, on arrival, with probability $urate_d$ you are unemployed and receive *benefits_d*. With probability $(1 - urate_d)$ you earn wage *wage_d*.

Migrants choose destination d with highest ex-ante expected utility $E[U_d] = urate_d * U(benefits_d) + (1 - urate_d) * U(wage_d)$

Destination choice: choice of lottery with highest expected utility $E[U_1], E[U_2], \ldots$

If you migrate to d, on arrival, with probability $urate_d$ you are unemployed and receive *benefits_d*. With probability $(1 - urate_d)$ you earn wage wage_d.

Migrants choose destination d with highest ex-ante expected utility $E[U_d] = urate_d * U(benefits_d) + (1 - urate_d) * U(wage_d)$

Destination choice: choice of lottery with highest expected utility $E[U_1], E[U_2], \ldots$

Key observations:

- <u>no role for size</u> of locations (*e.g.*#jobs)
- with risk-aversion, more variation makes a destination unattractive

Same in popular discrete choice migration models (Grogger and Hanson, 2011)

$$P = rac{m_{od}}{pop_o} = rac{exp(X_{od}eta)}{\sum_d exp(X_{od}eta)}$$

Assume $exp(X_{od}\beta) \equiv E[U_d]c_{od}$

$$\frac{m_{od}}{pop_o} = E[U_d]c_{od}\frac{1}{\sum_d E[U_d]c_{od}}$$

... note you can write this as a gravity equation. For example with $E[U_d] = w_d$

$$m_{od} = pop_o w_d c_{od} \frac{1}{\sum_d w_d c_{od}}$$

No role for size. Dispersion not attractive.

Compare this framework with how you would choose between holiday destinations.

Is there a lottery assigning you a random town, hotel, activity within the destination on arrival? No!

Compare this framework with how you would choose between holiday destinations.

Is there a lottery assigning you a random town, hotel, activity within the destination on arrival? No!

- You freely <u>choose</u> among all alternatives, in all countries. Bad alternatives (say boring or dangerous areas) are not relevant.
- You go to the country or region containing the single best alternative.
- A larger destination more likely contains your best alternative
- A destination with more <u>diversity</u> is more likely to contain your best alternative

Compare this framework with how you would choose between holiday destinations.

Is there a lottery assigning you a random town, hotel, activity within the destination on arrival? No!

- You freely <u>choose</u> among all alternatives, in all countries. Bad alternatives (say boring or dangerous areas) are not relevant.
- You go to the country or region containing the single best alternative.
- A larger destination more likely contains your best alternative
- A destination with more <u>diversity</u> is more likely to contain your best alternative

Similar for job-search: given a set of many offers, you ignore the bad offers, you move *after* you choosing the single best job offer. No need to consider expected value of randomly assigned job in each destination.

• Destination A has a larger average utility (dotted) over all its locations compared to destination B.

If you would be assigned a random location on arrival, better go to zone B!

• But if you can choose your preferred alternative within countries, zone A offers higher utility, just avoid the bad parts!

Takeaway: destinations offer a set of alternatives, and you can <u>choose the best one</u>, large destinations offering diverse alternatives are attractive. With uncertainty, other frameworks may be more relevant!

More formal, general: nested logit

McFadden 1978; Kanaroglou and Ferguson 1996; Train 2002.

$$P_d = \frac{\exp(w_d - c_{od} + \lambda_d I_d)}{\sum_e \exp(w_e - c_{oe} + \lambda_e I_e)} \qquad I_d = \log \sum_{g \in F_d} \exp(z_{gd}/\lambda_d).$$

More formal, general: nested logit

McFadden 1978; Kanaroglou and Ferguson 1996; Train 2002.

$$P_d = \frac{\exp(w_d - c_{od} + \lambda_d I_d)}{\sum_e \exp(w_e - c_{oe} + \lambda_e I_e)} \qquad I_d = \log \sum_{g \in F_d} \exp(z_{gd}/\lambda_d).$$

 $w_d - c_{od} + \lambda_d I_d$: the utility you get from choosing destination d. It equals the *expected maximum utility* from being able to choose your preferred element from the set F_d in d:

$$V_d \equiv E[\max_{f \in F_d} U_{ofi}] = w_d - c_{od} + \lambda_d I_d.$$

More formal, general: nested logit

McFadden 1978; Kanaroglou and Ferguson 1996; Train 2002.

$$P_d = \frac{\exp(w_d - c_{od} + \lambda_d I_d)}{\sum_e \exp(w_e - c_{oe} + \lambda_e I_e)} \qquad I_d = \log \sum_{g \in F_d} \exp(z_{gd} / \lambda_d).$$

 $w_d - c_{od} + \lambda_d I_d$: the utility you get from choosing destination d. It equals the *expected maximum utility* from being able to choose your preferred element from the set F_d in d:

$$V_d \equiv E[\max_{f \in F_d} U_{ofi}] = w_d - c_{od} + \lambda_d I_d.$$

... for normally distributed alternatives $z_{fd} \sim \mathcal{N}(z_d, \sigma_d^2)$:

$$V_d = w_d + z_d - c_{od} + \lambda_d \log(N_d) + 0.5 \frac{\sigma_d^2}{\lambda_d}$$

Note: for $\sigma \to 0, \lambda \to 1$ we are back in the multinomial case (IIA holds)

Conclusion

Migration in CGE can be modelled using gravity equation

$$m_{od} = pop_{o}y_{d}N_{d}^{\lambda_{d}}\sigma_{d}^{0.5/\lambda_{d}}\phi_{od}\frac{1}{\sum_{e}y_{e}N_{e}^{\lambda_{d}}\sigma_{d}^{0.5/\lambda_{d}}\phi_{od}}$$

Parameters can be estimated using Mult.logit or Poisson Note role for destination size N_d , and dispersion in opportunities σ_d .

- \$\lambda < 1\$ indicates model has residual correlation between elements within d... add variables, or higher levels of nesting.
- Only for $\lambda = 1$ merging two destinations new predicted flow is simply sum of old flows. Predicted flow to ctr is sum of predicted flow to reg.
- Multiple mass variables can only enter with 'constant returns to scale' $N_1^{\alpha_1}N_2^{\alpha_2}\dots$ and $\sum \alpha = 1$, or first aggregating in an index $N_1 + \alpha_2 N_2 + \alpha_3 N_3 + \dots$ with an exponent = 1. (Daly 1982).
- Ceteris paribus, diverse opportunities makes a location attractive.

Empirical Application: internal migration in Ethiopia

Consider migration histories reported in Ethiopian LFS (240.000 obs.). LFS data on

- individual chars .: gender, age, educ.
- zone and previous zone, rural/urban: 98 locations
- population of zone
- # paid jobs in zone (sometimes 0)

Combine LFS with

• data on number of houses with water (survey). Sometimes close to 0.

12/15

• data on dispersion in consumption (LSMS)

Empirical Application: internal migration in Ethiopia

- Use maximum likelihood estimation
- python BIOGEME (Bierlaire)

	(1)	(2)	(3)	(4)	(5)	(6)
log(pop)	0.48 (0.011)	0.472 (0.011)				
$log(houses + b_j jobs)$			0.767 (0.0065)	0.784 (0.00752)	0.775 (0.00768)	0.789 (0.00769)
bj			0.479 (0.0248)	1.78 (0.17)	1.49 (0.14)	1.614 (0.16)
log(distance)	-1.72 (.0103)	-1.7 (0.0104)	-1.61 (0.00951)	-1.59 (0.0093)	-1.59 (0.00926)	-1.6 (0.00931)
log(cons)	2.07 (0.0246)	2.06 (0.0249)	0.838 (0.0195)	0.293 (0.0223)	0.31 (0.0223)	0.274 (0.022)
l(urban)				1.13 (0.0289)	1.05 (0.0288)	1.05 (0.03667)
Var(cons)						0.104 (0.00396)
I(same region)	-0.499 (0.0239)	-0.456 (0.0241)	0.0566 (0.0231)	0.0552 (0.023)	-0.0461 (0.0227)	0.354 (0.0479)
I(same region)·I(urban)					-0.136	-0.18
I(same region)·Var(cons)					(0.0431)	(0.0434) 0.174 (0.00882)
I(o=d)		2.91 (0.128)	3.52 (0.109)	4.29 (0.132)	6.92 (0.129)	2.45 (0.117)
I(o=d)-age	0.461 (0.0212)	0.248 (0.0104)	0.203 (0.00552)	0.242 (0.00691)	0.196 (0.0063)	0.181 (0.00614)
I(o=d)-educ	-1.72 (0.101)	-1.77 (0.0668)	-2.02 (0.0474)	-2.46 (0.059)	-1.92 (0.0691)	-1.8 (0.0669)
$I(o=d) \cdot I(female)$	0.265 (0.0984)	-0.241 (0.0662)	-0.253 (0.056)	-0.306 (0.0665)	-0.239 (0.0513)	-0.222 (0.0502)
$I(o=d) \cdot I(urban)$					-0.393 (0.096)	-0.595 (0.121)
I(o=d)·Var(cons)						0.247 (0.0289)
ξ	0.155 (0.00767)	0.242 (0.00936)	0.287 (0.00652)	0.242 (0.00587)	0.3 (0.00993)	0.323 (0.00978)
AIC	228336 228413	227930 228016	214915 215011	213278 213384	213208 213333	212334 212487
Ν	110615					

- choosing relevant mass & combining 2 mass variables: much better fit (AIC,BIC) coefficient closer to 1.
- control for dispersion: coefficient close to 0.5 in own region smaller when farther exactly as expected

References

Anas, Alex (Feb. 1983). "Discrete choice theory, information theory and the multinomial logit and gravity models". en. In: *Transportation Research Part B: Methodological* 17.1, pp. 13–23. ISSN: 01912615. DOI: 10.1016/0191-2615(83)90023-1. URL: https://linkinghub.elsevier.com/retrieve/pii/0191261583900231 (visited on 10/30/2019).

Daly, Andrew (Feb. 1982). "Estimating choice models containing attraction variables". en. In: Transportation Research Part B: Methodological 16.1, pp. 5-15. ISSN: 01912615. DOI: 10.1016/0191-2615(82)90037-6. URL: https://linkinghub.elsevier.com/retrieve/pii/0191261582900376 (visited on 04/13/2021).

Kanaroglou, Pavlos S. and Mark R. Ferguson (May 1996). "Discrete Spatial Choice Models for Aggregate Destinations". en. In: *Journal of Regional Science* 36.2, pp. 271–290. ISSN: 0022-4146, 1467-9787. DOI: 10.1111/j.1467-9787.1996.tb01269.x. URL: http://doi.wiley.com/10.1111/j.1467-9787.1996.tb01269.x (visited on 05/07/2021).

McFadden, Daniel (1978). "Modeling the Choice of Residential Location". en. In: Spatial Interaction Theory and Planning Models. Ed. by A. Karlqvist et al. Amsterdam: North-Holland.

