

FSSIM-Dev: a farm level model for policy impact analysis

S. Rege, P. Tillie JRC Sevilla – European Commission

Accra, 15 September 2022

• What does FSSIM-DEV stand for?

Farming System SIMulator for DEVeloping Countries

• What is the main application?

Simulate supply responses of farmers to policy scenarios

Outline of this presentation...

1

Farmers' dilemma

Modelling Issues and Options

Modelling examples

Knowledge sharing & capacity building

Problem Definition

- Compute Responses (Supply and Demand) to Price changes
- Supply Responses impact income
 change in cropping patterns, labour
 requires a farm supply model for crops
- Demand responses impact expenditure
 changes in family consumption
 requires information on commodity demand to estimate expenditure system
- Combination of responses possible ONLY if data available on cropping and expenditure.

Farmers' dilemma

- Agro-Climatic zones and soil types define the type of crops that can be grown
- Farmers grow only a subset all possible crops (e.g. Cotton, Sorghum, Maize)
- Different farms have different crops. What drives these decisions?
- Work on own land or supply labour to other farms or both?

- Only Maximise Profits?
- Profits with environment concerns?
- Include Yield response to fertilizer input, soil types?
- Pure Economic models or use hybrid Agro-Economic models?
- **DATA** is the limiting factor! Determines the model structure.

- Ex-ante Impact (**EI**) Analysis: detailed study of the policy/program and an estimation/quantification of its possible outcomes prior to its implementation
- El analysis/assessment has become an integral and systematic part of policy decision making processes in many countries (evidence base policy)
- El is **complementary** to the common and the scientifically well-founded **ex-post** impact analysis designed to evaluate past policy effects
- El is based on available DATA and determines the model structure.

- Model key features of Developing Countries agriculture (market imperfection, seasonality, interaction among farms)
- Capture spatial and farm-household heterogeneity in term of policy effects (e.g. small versus big farms)
- Provide detailed socio-economic results (i.e. average and distribution over population)

- Flexibility in aggregating results by farm-household type, economic size, village, region or country.
- Generic and modular setup: can be easily adapted and re-used for assessing different policies under various socio-economic and bio-physical conditions.
- In-house model development & maintenance

FSSIM-Dev structure

DATA

Farm data (Land, Family labour, Capital...)

Crop & Livestock data (price, yield, inputs, costs, lab...)

Household data (HH members, reference consumption, off-farm income, income & demand elasticities ...

METHODS

Individual Farm Household (FH) model running for each single FH

Comparative static & nonlinear optimisation model

Capture key features of DC (market imperfect., inter-action among FH, seasonality...) Socio-economic FH income Activity level (ha & head) Production Land, labour, input use Food security Nutrition Environment

INDICATORS

APPLICATION

SENEGAL IVORY COAST NIGER ETHIOPIA TANZANIA

European Commission

Model Structure

Household model for policy analysis: FSSIM-Dev

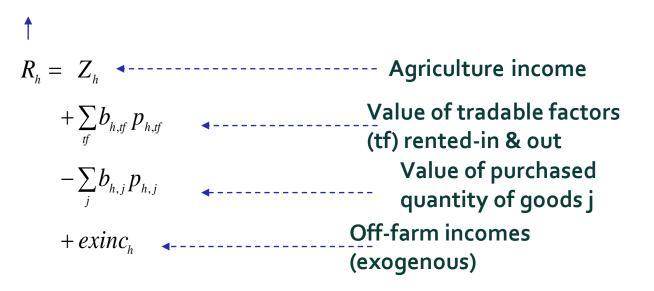
- **Farm Household model** (i.e. production and consumption decisions)
- Comparative **statics & non-linear** optimization model
- Calibrated using a Positive Mathematical Programming (**PMP**) approach
- Covering the major agricultural and livestock production activities
- Generic & Modular setup

Model Structure

Household model for policy analysis: FSSIM-Dev

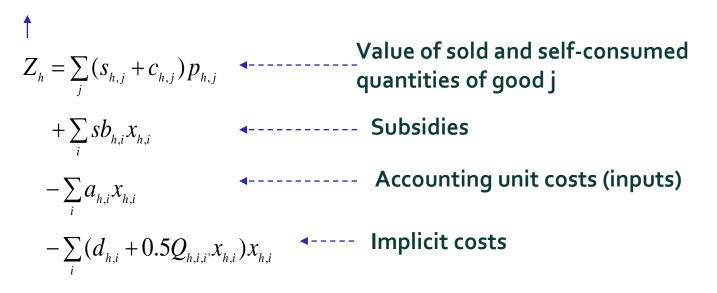
- Capture key features of Developing Countries agriculture:
 - **non-separable** production and consumption decisions
 - **heterogeneity** of farm households
 - interaction among farm-households for factor markets
 - **seasonality** of cropping activities and resource use
 - effects of transaction costs on market participation

Model Description

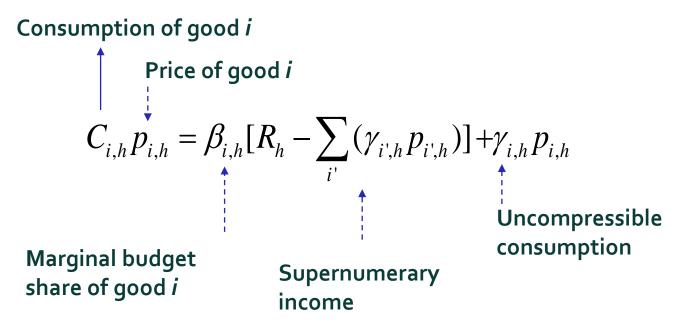

FSSIM-DEV's mathematical structure

- Maximize Farm household income
- Subject to:
 - Resource constraints
 - Consumption: Linear Expenditure System (LES)
 - Price bands & complementary slackness conditions
 - Market cleaning conditions

Model Description


Farm household income (i.e. full income)

Model Description


Agricultural/farm income

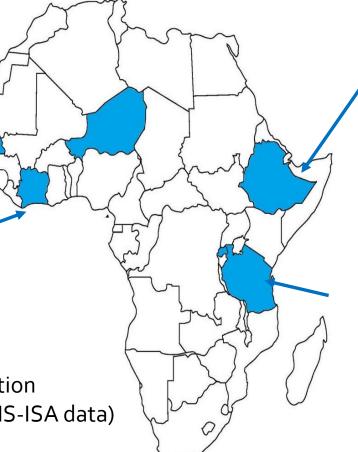

```
Model Description
```

```
Linear Expenditure System
```


FSSIM-Dev applications

Senegal

Impacts of fertiliser subsidy programme (2011 ESPS data)


Ivory Coast

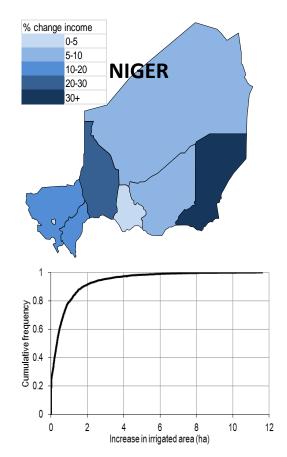
Impacts of support to cotton farming systems (own data collection)

Niger

17

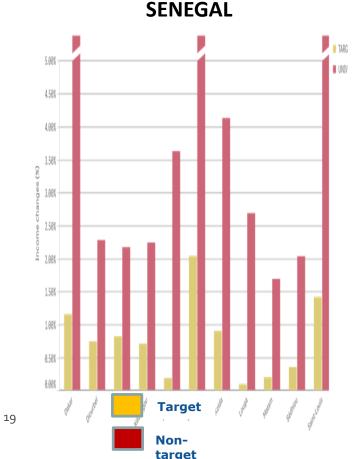
Impacts of Small Irrigation programme (2014 LSMS-ISA data)

Ethiopia


Impacts of minimum price support for cereals (2012 LSMS-ISA data)

Tanzania

Impacts of local fiscal policy (produce cess) and new price regulation (2013 LSMS-ISA data)


FSSIM-Dev applications

- In Niger, support to EU Delegation & Ministry of Agriculture to estimate the micro-level (farms/households) impact of Small Irrigation programme (SPIN) on food security and rural poverty (contribution of EU-Development Fund through budgetary support)
- Overall impact (2020): SPIN increases cropped land and total output, improve/stabilize yields, offer opportunities for off-season cropping and does not necessarily requires heavy investment / government support.
- +7% household Income (preliminary results).
 Higher positive impact for poorest households than for richest.

FSSIM-Dev applications

In Senegal, we assess impact of a targeted fertilizer non-targeted versus program.

- Overall impacts (preliminary results): very low impact at aggregated level. Impact is lower for smaller farmers (targeted programme) than for larger farmers - only few farms would be positively affected, for some farms income increase may reach 70%.
- The limited use of fertilizer programme and limited the resultant increase in productivity/income - especially among smaller farmers - could be explained by the limited available cash flow

voucher

Knowledge sharing & capacity building

Workshops in Partner Countries to discuss methodology, database and preliminary results.

Advanced training for selected colleagues from key institutions on quantitative methods/models developed within this project Shared projects to share model "ownership".

Keep in touch

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

EU Science Hub

EU science

Thank you

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

